loading

 sales@gsl-energy.com     0086 13923720280

reaction temperature sensing (rts)-based control for li-ion battery safety

We report temperature sensing (RTS)-
Fundamentally strengthen basic control
Ion battery safety
RTS placed in Li-
The ion battery display detects temperature rise faster and more accurately than the external measurement battery surface temperature.
We proved RTS for the first time-
Close a dangerous short based on control
Circuit events 3 times earlier than surface temperature-
Based on the control, prevent the battery from overheating at 50 °c, resulting in damage to the battery.
As shown in the figure, cylindrical Li-
Ion battery (
Format 18650, diameter 18mm, height 65mm)
Embedded micro-reaction temperature sensor (RTS)
For internal reaction temperature diagnosis.
The micro temperature sensor is located at the front end of the reaction area of the cylindrical Li-
Ion batteries with the highest temperature along the radial direction.
With the traditional cylindrical Li-
Ion batteries, there are four additional steps to make batteries with RTS :(1)
Micro temperature sensor coated with P-px
Corrosion in operation
Conditions of ion pool; (2)
During the winding process, the sensor is embedded in the reaction interface between the negative electrode and the separator near the innermost side of the jelly coil; (3)
Insert the jelly roller with embedded sensor with pre-
A small hole was drilled on the wall for sticking the sensor out of the tank; (4)
Before filling the electrolyte and battery curl, seal the small holes in the wall of the jar with epoxy resin.
The micro-temperature sensor used in this study is the T-type micro-thermocouple (
RTD 600 T)
The wire is 80 um in diameter and 10 um in insulation.
The micro-thermocouple received on the measuring tip is not insulated.
In the nano-processing laboratory of Penn State Institute of Materials, a special parylene evaporator is used to coat a parylene layer of 10 μm at the measuring tip.
Using insulation, the sensor measures the thickness of the tip at 100 Ethereum, the same thickness as the wire.
Place another micro-temperature sensor on the outer surface of the battery to monitor the surface temperature (T)
And compare with RTS.
The experimental battery is used in the battery manufacturing laboratory of Penn State University (NCM)
Graphite is used as positive and negative electrode materials respectively.
The thickness of the positive and negative electrodes is mm and mm, respectively, including the collection of the current collector and the coating on both sides.
The positive collector is aluminum foil with 15 Ethereum and the negative collector is copper foil with 10um um.
The separator Celgard®2320pp PP/PE/PP three-layer film with a thickness of 20 um.
Electrolyte is 1.
EC: EMC: DMC (20:20:60u2009v%).
To verify the effectiveness of RTS, we have developed an experimental system that can trigger and terminate short circuit of experimental Li-ion cell.
The experimental system is illustrated.
Shunt resistance (0. 15u2009mΩ, ±0. 5%, OHMITE, USA)
Used to measure the short circuit current of the battery.
The total external short circuit resistance is 10mm Ω, including all resistors on the outside of the battery, measured by a low resistance meter (
3560 Aoki, Japan).
Temperature Controller (
CN8201, Omega Engineering Company, USA)
And contactor (
LEV200, Tyco Electronics, USA)
Used to start and terminate short circuits. A multi-
Channel data acquisition unit (
34 70A, Agilent Technology Company, USA)
Used to record the internal reaction temperature, surface temperature, current and voltage of the battery during each 0 tests. 5u2009s.
Battery tester (
BT2000, American Arbin Instrument Company)
Used to fully charge the battery before the short circuit test and characterize the battery performance after the short circuit test.
The short circuit test is carried out in a safe chamber providing natural convection cooling conditions.
With constant current, the battery is fully charged-
Constant Voltage (CC-CV)protocol (0. 8u2009A, 4. 2u2009V max, 0. 032u2009A cut-off)
At room temperature (25u2009±u20091u2009°C).
The battery then rests for at least an hour to allow open voltage (OCV)
Before the performance representation after the short circuit test or short circuit test, the battery temperature is balanced.

GET IN TOUCH WITH Us
recommended articles
SERVICE INFO CENTER Blogpost
Join GSL ENERGY at the 137th Canton Fair – Powering the Future with Premium Energy Storage Solutions!
Discover GSL ENERGY's groundbreaking advancements in energy storage technology at the 137th Canton Fair. Witness our state-of-the-art automated production facilities and rigorous quality assurance system. Meet our team at Booth 14.3A04-05 to explore customized solutions for your energy storage needs.
25kWh Stackable Home Energy Storage System Installed in Africa

In March 2025, GSL Energy successfully installed a 25kWh stackable energy storage system in Mauritius, Africa.The system consists of five 5kWh LiFePO₄ battery packs, seamlessly integrated with a GSL inverter.his advanced energy solution has significantly alleviated the homeowner's electricity shortages, reducing reliance on costly and polluting diesel generators.By providing a stable and uninterrupted power supply, the system ensures a seamless and reliable experience for residents and guests, contributing to both cost savings and environmental sustainability.
Powering Haiti’s Future: GSL Brings Energy Freedom to a Nation in Need
Are you tired of unreliable electricity and high costs? GSL Energy is bringing a solution to Haiti with their solar energy storage systems, providing 24/7 power, lower costs, and disaster resilience. Join us in powering a brighter future and breaking free from unreliable power sources. Contact us today to be part of the energy revolution!
Revolutionizing Energy Storage: GSL Energy's 232kWh Liquid Cooling Cabinet in Dongguan
Discover how GSL Energy is revolutionizing energy storage with their state-of-the-art 232kWh Liquid Cooling Cabinet in Dongguan, China. This cutting-edge system offers advanced thermal management, high-capacity storage, seamless integration, and eco-friendly sustainability. Contact GSL Energy now for customized energy storage solutions that can transform your business's energy efficiency and support a cleaner future.
Solar Energy Storage Battery Guide: Which Type is Best for You?
Looking to maximize your solar energy efficiency and reduce costs? In this guide, GSL Energy compares the top solar energy storage batteries, with lithium-ion (LiFePO4) emerging as the best choice for residential, commercial, and off-grid applications. With GSL's industry-leading LiFePO4 technology, enjoy long-term reliability, high efficiency, and smart scalability for all your energy storage needs. Power your solar energy smarter with GSL LiFePO4 batteries today!
Why LiFePO4 Batteries Dominate Home and Commercial Battery Energy Storage Systems
Discover why LiFePO4 batteries from GSL Energy are dominating the home and commercial energy storage market. With unmatched safety, extended cycle life, and sustainable design, our battery systems offer operational excellence and peace of mind with industry-leading warranties. Join over 150,000 users worldwide who have achieved energy independence and cost savings with GSL Energy's cutting-edge technology.
Discover how a small apartment hotel in the U.S. transformed its energy infrastructure with GSL's cost-effective solar battery solutions. By installing GSL's wall-mounted energy storage lithium batteries, the hotel now enjoys reliable backup power during emergencies and significantly reduced electricity costs. With easy installation and seamless compatibility, GSL's innovative battery storage technology is the top choice for businesses looking to optimize energy management and cut down on expenses.
Deployment of 250kW/600kWh Industrial Energy Storage System in Ukraine
Introducing the Deployment of a 250kW/600kWh Industrial Energy Storage System in Ukraine. This cutting-edge system, boasting quick installation and cost efficiency, offers easy scalability and safety technology with multi-level protection. With multiple certifications, GSL-BESS50K120kWh sets a new standard for commercial and industrial energy storage solutions.
Join GSL ENERGY at the 137th Canton Fair – Explore Advanced Energy Storage Solutions!
GSL ENERGY is thrilled to invite you to the 137th Canton Fair from April 15-19, 2025, at the China Import and Export Fair Complex in Guangzhou. Visit us at Booth 14.3A04-05 to discover our state-of-the-art industrial and residential energy storage solutions. With a commendable annual production capacity of over 5.8 GWh and certifications from UL9540 and CEI-021, our customized solar battery systems promise exceptional performance, efficiency, and sustainability. Connect with our experts and explore how we can help power your business effectively—book your appointment today!
Wall-Mounted Solar Battery Installation Canada | Home Energy Storage Case Study
Upgrade your commercial energy storage with Canada's successful deployment of 6 wall-mounted solar battery units. These innovative systems offer space-saving solutions, real-time load monitoring, and seamless integration with existing PV arrays. Experience a 45% reduction in peak demand charges and 8 hours of emergency backup power for your commercial building in sub-zero climates.
no data
 Service Tel: +86-755-84515360
 Address: A602, Tianan Cyber Park, Huangge North Road, Longgang District, Shenzhen, China
GSL ENERGY - A leader of green energy provider in china since 2011

0086 13923720280

Solar energy storage battery manufacturer contact information
Contact us
whatsapp
contact customer service
Contact us
whatsapp
cancel
Customer service
detect